愛知県公立入試問題過去問 (2年)

教科書 5章 「図形 の性質を証明(H25~R2)」 + 1章 ()年()組 氏名()

【25B】 連続する2つの奇数の積に1をたした数は、偶数の2乗 になることを次のように証明したい。

【 Ⅰ 】、【 Ⅱ 】にあてはまる最も適当な式を書きなさい。

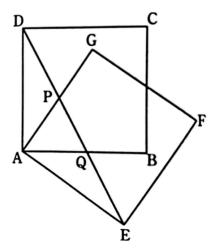
(証明)

整数nを使って、連続する2つの奇数のうち小さい方の奇数 を2n-1と表すと、大きい方の奇数は、【 I 】と表される。

それらの積に1をたした数は(2n-1)(【I])+1 である。これを計算すると、([I]]) となり、偶数([I]])の2乗になる。[I] 証明終了

【26A】 図で、正方形 AEFG は、正方形 ABCD を、頂点 Aを回転の中心として、時計の針と同じ向きに回転移動したものである。 また、P、Q はそれぞれ線分 DE と辺 AG、AB との交点である。 このとき、AP=AQ となることを次のように証明したい。

【 I 】、【 II 】にあてはまる最も適当なものを、下のアから カまでの中からそれぞれ選んで、そのかな符号を書きなさい。 また、【 A 】にあてはまる数を書きなさい。ただし、回転する角度は 90°よりも小さいものとする。なお、2か所の【 A 】には、同じ数が あてはまる。



(証明)

 \triangle ADP $\angle\triangle$ AEQ で、AD \angle AE は同じ大きさの正方形の辺なので、AD = AE ・・・① ①から \triangle AED は二等辺三角形なので、 \angle ADP = 【 I 】 ・・・② また、 \angle PAD = 【 A 】 $^\circ$ — \angle PAQ、 \angle QAE = 【 A 】 $^\circ$ — \angle PAQ より、 \angle PAD = \angle QAE ・・・③ ①、②、③から、【 II 】ので、 \triangle ADP \equiv \triangle AEQ よって、 \triangle AP = \triangle Q [証明終了]

- 7 ZAQE 1 ZAEQ D ZEAQ
- エ 1辺とその両端の角が、それぞれ等しい オ 2辺とその間の角が、それぞれ等しい
- カ 2組の角が、それぞれ等しい

【26B】 線分 ABと線分 CD が点 O で交わっているとき、AO=BO、CO=DO ならば、AC//DB であることを、次のように証明したい。

【 I 】、【 Ⅱ 】、【 Ⅲ 】にあてはまる最も適当なものを、 あとのアから力までの中からそれぞれ選んで、そのかな符号を書きなさい。

(証明)

△AOC と△BOD で、仮定より AO=BO ···① CO=DO ···②

【 I 】は等しいから、∠AOC=∠BOD ···③

①、②、③から、【 Ⅱ 】が、それぞれ等しいので、△AOC≡△BOD 合同な図形では、対応する角の大きさは等しいので、∠ACO=∠BDO 2つの直線に1つの直線が交わるとき、【 Ⅲ 】が等しいならば、この2つの直線は平行だから AC//DB

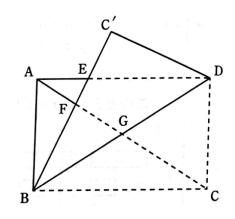
ア 同位角 イ 錯角 ウ 対頂角

Ⅰ エ 1組の辺とその両端の角 オ 2組の辺とその間の角 カ 2組の辺と1組の角

【27A】 図は、AB<ADである長方形 ABCDを、線分 DBを折り目として、辺 BC が ADと交わるように折り曲げた ものであり、頂点 C が移った点を C'とする。 E は線分 ADと C'Bとの交点、F、G はそれぞれ線分 ACと C'B、DBとの 交点である。

このとき、 \triangle AFE \bigcirc BFG となることを次のように証明したい。 [A] にあてはまる記号を答えなさい。

また、(I)、(I)にあてはまる最も適当なものを、下のアからキまでの中からそれぞれ選んで、その符号を答えなさい。



(証明)

 \triangle ACD \angle BDC' \overline{c}

 $\angle ADC = \angle BC'D = 90^{\circ} \cdots (1)$

 $AC = BD \cdots (2)$

 $CD = DC, \cdots (3)$

①②③から、直角三角形の斜辺と他の1辺が、それぞれ等しいので、

 $\triangle ACD[A] \triangle BDC' \cdots \textcircled{4}$

次に、△AFE と△BFG で、

④より、(I)な図形では、対応する角の大きさは等しいので、

 $\angle EAF = \angle GBF \cdots 5$

(Ⅱ)は等しいので ∠AFE = ∠BFG ···⑥

⑤、⑥から、2組の角が、それぞれ等しいので、△AFE∽△BFG

[証明終了]

ア平行

イ 垂直

ウ 合同

工 対称

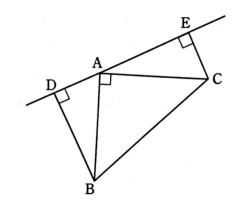
オ 同位角

カ 錯角

キ 対頂角

【27B】 図のように、AB = AC である直角二等辺三角形 ABC の頂点 A を通る直線に、頂点 B、C からそれぞれ垂線 BD、CE をひく。このとき、BD + CE = DE であることを次の ように証明したい。 【 A 】、【 B 】にあてままる数を それぞれ書きなさい。また、【 I 】、【 II 】、【 II 】 にあてはまるものの組み合わせとして最も適当なものを、下の アから工までの中から選んで、そのかな符号を書きなさい。

なお、2 か所の[A]には同じ数、3 か所の[I]と 2 か所の[II]、[III] にはそれぞれ同じものがあてはまる。



(証明)

△ADB と△CEA で、仮定より、∠ADB = ∠CEA = 90° ···①

 $AB = CA \cdots 2$

 $\sharp t$, $\angle ABD = [A]^{\circ} - \angle [I] \cdots 3$ $\angle CAE = [B]^{\circ} - \angle BAC - \angle [I] \cdots 3$ $= [A]^{\circ} - \angle [I] \cdots 4$

- 3, 4th, $\angle ABD = \angle CAE \cdots 5$
- ①、②、⑤から、直角三角形の斜辺と1つの鋭角が、それぞれ等しいので、

△ADB≡△CEA

合同な図形では、対応する辺の長さは等しいので、

BD = [II], [III] = CE

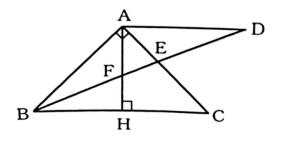
よって、BD+CE=【 Ⅱ 】+【 Ⅲ 】=DE [証明終了]

【28A】 図で、△ABC は、∠BAC=90°の 直角二等辺三角形である。D は∠ABC の二等分 線上の点で、AD//BC である。

H は辺 BC 上の点で、AH LBC であり、E、F は それぞれ線分 DBと AC、AH との交点である。

このとき、 \triangle ABF と \triangle ADE が合同であることを、 次のように証明したい。【 I 】、【 II 】、

【 Ⅲ 】にあてはまる最も適当なものを、下のアからケまでの中からそれぞれ選んで、そのかな符号を書きなさい。



(証明)

△ABF と△ADE で、BD は ∠ABC の二等分線なので、∠ABF = 【 I 】 ···①

AD//BCより錯角は等しいから、 ZADE=【 I 】 ···②

①、②より、 $\angle ABF = \angle ADE \cdots 3$

よって△ABD は二等辺三角形となるので、AB=AD ···④

また、∠BAF=90°-【 Ⅱ 】 ···⑤ AD//BCより、錯角は等しいから、

 $\angle DAF = \angle BHF = 90^{\circ}$ となるので、 $\angle DAE = 90^{\circ}$ - 【 II 】 ···⑥

- (5), (6)\$(1), $\angle BAF = \angle DAE \cdots (7)$
- ③、④、⑦より、△ABFと△ADE は、【 Ⅲ 】が、それぞれ等しいので、△ABF≡△ADE

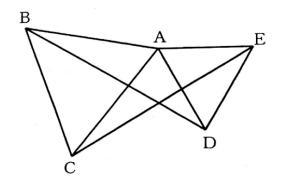
ア ZFAD イ ZFAE ウ ZFEA エ ZFBH オ ZFHB カ ZFEC キ 1組の辺とその両端の角 ク 2組の辺とその間の角 ケ 3組の辺 【28B】 次の文章は、カレンダーに書かれた数字について述べたものである。文章中の【 A 】、【 B 】 【 C 】、【 D 】にあてはまる数をそれぞれ書きなさい。

図は、今年の4月のカレンダーである。

【 で囲まれた縦に並んだ3つの数 4、11、18の 和は33で、 の中の上から A 】番目に ある数の3倍になっている。

日月火水木金土 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

【29B】 図で、△ABCと△ADE は正三角形である。 このとき、△ABD≡△ACE となることを次のように証明した。 しかし、書かれている証明は、このままでは、正しくない。 証明の下線部のうち、いずれか1つを書き直すことで、証明 を正しくすることができる。この証明を正しくするために、下線部 アからキまでのうち、どれを書き直せばよいか。書き直すものを 1つ選んで、そのかな符号を書きなさい。また、証明が正しく なるように、その下線部を書き直しなさい。



(証明) $\triangle ABD$ と $\triangle ACE$ において、

 $\tau^{AB=AC}$ \triangle ABCは正三角形なので、(1)(2) ∡∠BAC=60° △ADEは正三角形なので、 AD=DE(3) $_{\mathbf{T}}\angle EAD=60^{\circ}$(4) ② \sharp 0, \star \angle BAD= \angle BAC+ \angle CAD= $60^{\circ}+\angle$ CAD(5) ④より、 $_{1}$ \angle CAE = \angle EAD + \angle CAD = 60° + \angle CAD(6) $\pm \angle BAD = \angle CAE$ ⑤, ⑥より,(7) ①、③、⑦より、2組の辺とその間の角が、それぞれ等しいので、

り、③、少より、2種の起こその間の角が、それでれ等しい

 $\triangle ABD \equiv \triangle ACE$

【30A】 次の文章は、連続する5つの自然数について述べたものである。文章中の【 A 】にあてはまる最も適当な式を書きなさい。また、【 a 】、【 b 】、【 c 】、【 d 】にあてはまる自然数をそれぞれ書きなさい。

連続する5つの自然数のうち、最も小さい数をnとすると、最も大きい数は、【 A 】と表される。 このとき、連続する5つの自然数の和は【 a 】(n+【 b 】)と表される。

このことから、連続する5つの自然数の和は、小さい方から【 c 】番目の数の【 d 】倍となっていることがわかる。

[31A] [31B, R2] は出題なし

(2) 図で、四角形ABCDは正方形であり、Eは対角線AC上の点で、AE>ECである。また、F、Gは四角形DEFGが正方形となる点である。

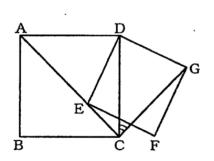
ただし、辺EFとDCは交わるものとする。

このとき、 ∠DCGの大きさを次のように求めた。

Ⅰ , Ⅱ にあてはまる数を書きなさい。また,

(a) にあてはまることばを書きなさい。

なお, 2か所の I には, 同じ数があてはまる。



「2点] (完答)

```
\triangle AED \& \triangle CGD \mathcal{C},
四角形ABCDは正方形だから、AD=CD
                                                             • • (1)
四角形DEFGは正方形だから、ED=GD
                                                            • • • ②
また.
\angle ADE = \boxed{I}^{\circ} - \angle EDC, \angle CDG = \boxed{I}^{\circ} - \angle EDC
                                                           より.
                        \angle ADE = \angle CDG
①, ②, ③から, (
                    a ) が, それぞれ等しいので,
                        \triangle AED \equiv \triangle CGD
合同な図形では、対応する角は、それぞれ等しいので、
                       \angle DAE = \angle DCG
したがって、
                       ∠DCG= II °
```

愛知県公立入試問題過去問 [2年]

教科書 5章 「図形 n 性質を証明(H25 ~R2)」 + 1章 ()年()組 氏名(

【25B】 連続する2つの奇数の積に1をたした数は、偶数の2乗になることを次のように証明したい。

【 Ⅰ 】、【 Ⅱ 】にあてはまる最も適当な式を書きなさい。

(証明)

整数nを使って、連続する2つの奇数のうち小さい方の奇数 を2n-1と表すと、大きい方の奇数は、【 I 】と表される。

それらの積に1をたした数は(2n-1)(【I])+1 である。これを計算すると、(【I]) 2 となり、偶数(I] 2 となり、

$$(2n-1)(2n+1)+1$$

$$= 4n^2-1+1$$

$$= 4n^2 = (2n)^2$$
I ... $2n+1$

-- Point -

の具体例的 这结论系。

)

「連続する 2つの奇教」

例が3と5 +2

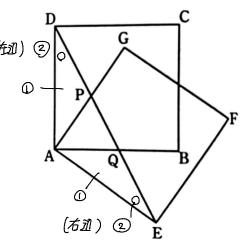
奇数は 2n+1 や2n+3 と表されるが 2っ式を 使う場合は左右対称型 か 手際良 11。

$$2u-1$$
, $2u+1$

【26A】 図で、正方形 AEFG は、正方形 ABCD を、頂点 A を 回転の中心として、時計の針と同じ向きに回転移動したものである。 (たむ) ② また、P、Q はそれぞれ線分 DE と辺 AG、AB との交点である。 このとき、AP = AQ となることを次のように証明したい。

【 I 】、【 II 】にあてはまる最も適当なものを、下のアから カまでの中からそれぞれ選んで、そのかな符号を書きなさい。 また、【 A 】にあてはまる数を書きなさい。ただし、回転する角度は 90°よりも小さいものとする。なお、2か所の【 A 】には、同じ数が あてはまる。

[I] \([II] \(III \) \(I



(証明)

 \triangle ADP $\angle\triangle$ AEQ で、AD \angle AE は同じ大きさの正方形の辺なので、AD = AE · · · ① ①から \triangle AED は二等辺三角形なので、 \angle ADP = 【 I 】 · · · ② また、 \angle PAD = 【 A 】 ° $-\angle$ PAQ、 \angle QAE = 【 A 】 ° $-\angle$ PAQ より、 \angle PAD = \angle QAE · · · ③ ①、②、③から、【 II 】ので、 \triangle ADP $\equiv\triangle$ AEQ

__ Poin+ ___ 図に書き込む

- 7 ZAQE 1 ZAEQ D ZEAQ
- エ 1辺とその両端の角が、それぞれ等しい オ 2辺とその間の角が、それぞれ等しい
- カ 2組の角が、それぞれ等しい

よって、AP=AQ [証明終了]

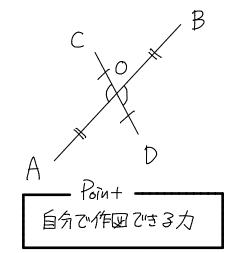
【26B】 線分 ABと線分 CD が点 O で交わっているとき、AO=BO、 CO=DO ならば、AC//DB であることを、次のように証明したい。

【 Ⅰ 】、【 Ⅱ 】、【 Ⅲ 】にあてはまる最も適当なものを、 あとのアから力までの中からそれぞれ選んで、そのかな符号を書きなさい。

△AOC と△BOD で、仮定より AO=BO ···① CO=DO ···②

【 I 】は等しいから、∠AOC = ∠BOD ···③

①、②、③から、【 II 】が、それぞれ等しいので、 $\triangle AOC \equiv \triangle BOD$ 合同な図形では、対応する角の大きさは等しいので、 ZACO = ZBDO 2つの直線に1つの直線が交わるとき、【 Ⅲ 】が等しいならば、この2つ の直線は平行だから AC//DB



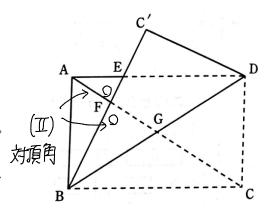
ウ 対頂角 ア 同位角 イ 錯角

エ 1組の辺とその両端の角 オ 2組の辺とその間の角 カ 2組の辺と1組の角

【27A】 図は、AB<ADである長方形 ABCDを、線分 DBを折り目として、辺BCがADと交わるように折り曲げた ものであり、頂点 C が移った点を C'とする。 E は線分 ADと C'Bとの交点、F、Gはそれぞれ線分 ACとC'B、DBとの 交点である。

このとき、△AFE∽△BFGとなることを次のように証明したい。 [A] にあてはまる記号を答えなさい。

また、(I)、(I)にあてはまる最も適当なものを、 下のアからキまでの中からそれぞれ選んで、その符号を答え なさい。



(証明)

 \triangle ACD と \triangle BDC 'で、

飼練ない (I)ウ

 $\angle ADC = \angle BC \cdot D = 90^{\circ} \cdot \cdot \cdot \cdot 1$

 $\lceil A \rceil \equiv$

(工) キ

 $AC = BD \cdots (2)$

 $CD = DC, \cdots (3)$

①②③から、直角三角形の斜辺と他の1辺が、それぞれ等しいので、

 $\triangle ACD[A] \triangle BDC' \cdots 4$

次に、△AFE と△BFG で、

④より、(I)な図形では、対応する角の大きさは等しいので、

 $\angle EAF = \angle GBF \cdots 5$

(Ⅱ)は等しいので ∠AFE = ∠BFG ···⑥

⑤、⑥から、2組の角が、それぞれ等しいので、△AFE∽△BFG

[証明終了]

ア平行

イ 垂直

ウ 合同

工 対称

才 同位角

カ 錯角

キ 対頂角

【27B】 図のように、AB=ACである直角二等辺三角形 ABC の頂点 Aを通る直線に、頂点 B、C からそれぞれ垂線 BD、CE をひく。このとき、BD + CE = DE であることを次の ように証明したい。 【 A 】、【 B 】にあてままる数を それぞれ書きなさい。また、【 Ⅰ 】、【 Ⅱ 】、【 Ⅲ 】 にあてはまるものの組み合わせとして最も適当なものを、下の アから工までの中から選んで、そのかな符号を書きなさい。

なお、2か所の【 A 】には同じ数、3か所の【 I 】と 2か所の【 Ⅱ 】、【 Ⅲ 】にはそれぞれ同じものがあて はまる。

> [A] 90 [B] 180 Ĥ

(証明)

△ADB と△CEA で、仮定より、∠ADB = ∠CEA = 90° ···①

 $AB = CA \cdots 2$

また、∠ABD=【 A 】° —∠【 I 】 ···③

 $\angle CAE = [B]^{\circ} - \angle BAC - \angle [I] \cdots 3$

= $[A]^{\circ}$ — $\angle[I]$...4

- (3), (4), $\angle ABD = \angle CAE \cdots (5)$
- ①、②、⑤から、直角三角形の斜辺と1つの鋭角が、それぞれ等しいので、

△ADB≡△CEA

合同な図形では、対応する辺の長さは等しいので、

よって、BD+CE=【 Ⅱ 】+【 Ⅲ 】=DE [証明終了]

7 I BAD、Ⅱ AD、Ⅲ AE イ I ADB、Ⅱ AE、Ⅲ AD

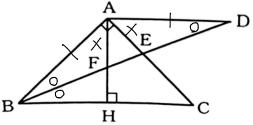
エ I ADB、II AD、III AE ウ I BAD、II AE、III AD

【28A】 図で、△ABCは、∠BAC=90°の 直角二等辺三角形である。Dは ZABC の二等分 線上の点で、AD//BC である。

H は辺 BC 上の点で、AH LBC であり、E、F は それぞれ線分 DBとAC、AHとの交点である。

このとき、△ABF と△ADE が合同であることを、 次のように証明したい。【 I 】、【 II 】、

【 Ⅲ 】にあてはまる最も適当なものを、下のアからケ までの中からそれぞれ選んで、そのかな符号を書きなさい。



3, £, D & y

角2つ、辺1つなので

(証明)

[I] L [I] I

「皿」キ

△ABF と△ADE で、BD は ∠ABC の二等分線なので、∠ABF = 【 I 】 ···①

AD//BC より錯角は等しいから、 ZADE = 【 I 】 ···②

①、②より、 $\angle ABF = \angle ADE \cdots 3$

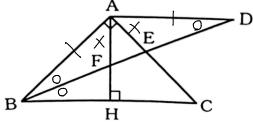
よって△ABD は二等辺三角形となるので、AB=AD ···④

また、∠BAF = 90° - 【 Ⅱ 】 ···⑤ AD//BC より、錯角は等しいから、

 $\angle DAF = \angle BHF = 90$ ° となるので、 $\angle DAE = 90$ ° - 【 Ⅱ 】 ···⑥

- 5, 6 \downarrow 0, $\angle BAF = \angle DAE \cdots ?$
- ③、④、⑦より、△ABFと△ADE は、【 Ⅲ 】が、それぞれ等しいので、△ABF≡△ADE

ア ZFAD イ ZFAE ウ ZFEA エ ZFBH オ ZFHB キ 1組の辺とその両端の角



ク 2組の辺とその間の角 ケ 3組の辺 【28B】 次の文章は、カレンダーに書かれた数字について述べたものである。文章中の【 A 】、【 B 】 【 C 】、【 D 】にあてはまる数をそれぞれ書きなさい。

図は、今年の4月のカレンダーである。 ----で囲まれた縦に並んだ3つの数4、11、18の

ある数の3倍になっている。

[A]2

 $||x|^{3}$

b=a+[B]

b= a+7

c=a+【 C 】 と表せる。そして、

a+b+c=a+(a+[B])+(a+[C])

= 3 (a + (D))

17 18 19 20 21 22 23 24 25 26 27 28 29 30 [B] 7 [C] 14

[D]7

日月火水木金土

10 11 12 13 14 15 16

3:4:5 6 7 8

1

2

$$A+b+C = A+(a+7)+(a+14)$$

= $3A+21$
= $3(a+7)$

【29B】 図で、△ABC と△ADE は正三角形である。 このとき、△ABD≡△ACE となることを次のように証明した。

しかし、書かれている証明は、このままでは、正しくない。 証明の下線部のうち、いずれか1つを書き直すことで、証明 を正しくすることができる。この証明を正しくするために、下線部 アからキまでのうち、どれを書き直せばよいか。書き直すものを 1つ選んで、そのかな符号を書きなさい。また、証明が正しく

なるように、その下線部を書き直しなさい。

B D A D A

В

(証明) $\triangle ABD$ と $\triangle ACE$ において,

 \triangle ABCは正三角形なので、

 $7\underline{AB=AC}$

·····①

E

△ADEは正三角形なので、

AD=DE

∡∠BAC=60°

.....3

AD, DE のうち DEは証明に

 $\underline{\underline{\tau}\angle EAD = 60^{\circ}}$ ②より、 $\underline{\underline{\tau}\angle BAD = \angle BAC + \angle CAD} = 60^{\circ} + \angle CAD$

·····④ ·····⑤

関係なり

④より、 $\frac{1}{2}$ $\angle CAE = \angle EAD + \angle CAD = 60^{\circ} + \angle CAD$

……⑥ ここで右同条件 ……⑦ が在筆定(21/3

まと。

⑤, ⑥より, $+ \angle BAD = \angle CAE$ ……⑦ ①, ③, ⑦より, 2組の辺とその間の角が, それぞれ等しいので,

ので頭に入れ2

 $\triangle ABD \equiv \triangle ACE$

##1#

【30A】 次の文章は、連続する5つの自然数について述べたものである。文章中の【 A 】に あてはまる最も適当な式を書きなさい。また、【 a 】、【 b 】、【 c 】、【 d 】にあてはまる 自然数をそれぞれ書きなさい。

連続する5つの自然数のうち、最も小さい数をnとすると、最も大きい数は、【 A 】と表される。 このとき、連続する5つの自然数の和は $\begin{bmatrix} a \end{bmatrix}$ $\begin{bmatrix} n+ \end{bmatrix}$ $\begin{bmatrix} b \end{bmatrix}$)と表される。

このことから、連続する5つの自然数の和は、小さい方から【 c 】番目の数の【 d 】倍と なっていることがわかる。

$$U_1$$
 U_1 U_1 U_2 U_1 U_2 U_1 U_2 U_3 U_4 U_4 U_4 U_5 U_6 U_6 U_6 U_6 U_7 U_7 U_7 U_8 $U_$

A=5.b=2, C=3, d=5

[31A] [31B, R2] は出題なし

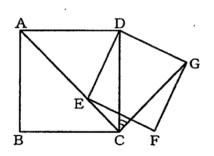
(2) 図で,四角形ABCDは正方形であり、Eは対角線AC上 の点で、AE>ECである。また、F、Gは四角形DEFG が正方形となる点である。

ただし、辺EFとDCは交わるものとする。

このとき、∠DCGの大きさを次のように求めた。

Ⅰ , Ⅱ にあてはまる数を書きなさい。また, a) にあてはまることばを書きなさい。

なお, 2か所の I には, 同じ数があてはまる。



「2点] (完答)

 $\triangle AED \& \triangle CGD \circlearrowleft$ 四角形ABCDは正方形だから、AD=CD 四角形DEFGは正方形だから、ED=GD 90 $\angle ADE = \boxed{I}^{\circ} - \angle EDC, \angle CDG = \boxed{I}^{\circ} - \angle EDC \downarrow b$ 2組の到こる間の角 ZADE=ZCDG ①, ②, ③から, (a) が, それぞれ等しいので, $\triangle AED \equiv \triangle CGD$ 合同な図形では、対応する角は、それぞれ等しいので、 ∠DAE=∠DCG ∠DCG= II ° 45 したがって、